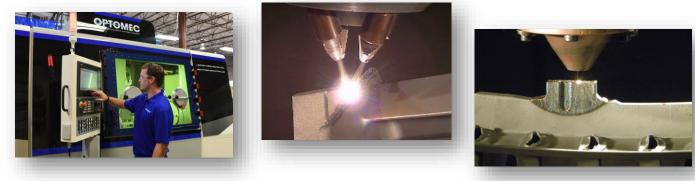


LENS Systems and Applications

Confidential & Proprietary


Agenda

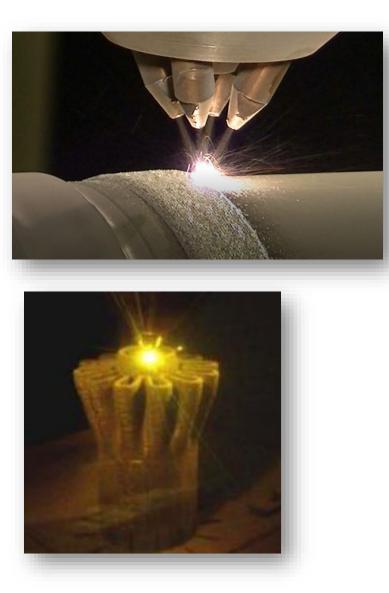
- About Optomec
- The LENS Process
- Metal AM Processes- DED and PBF
- New LENS Platform Line-up
- LDH Technology
- Software PartPrep and MC/LENS plug-in/Control Software
- LENS Applications

About Optomec

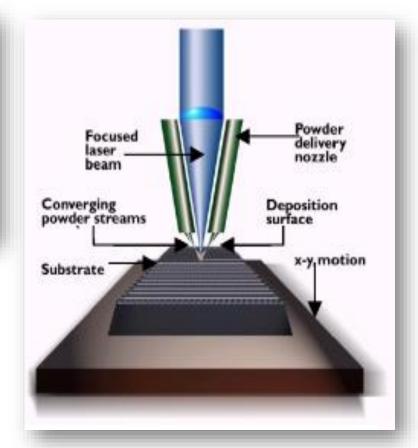
- Located in Albuquerque, New Mexico (Aerosol Jet in St. Paul, Minnesota).
- 20+ years experience in LENS metal Additive Manufacturing.
- World renowned for LENS technological advancements, systems, and software.
- About 100 Optomec LENS systems installed and operating around the globe today.
- Excellent customer service supportservice contracts available.
- Sales reps available in US, EU, and Asia-Pacific regions.

Leader in Additive Manufacturing (AM) Technology

- Experience Production Proven for Metals, Electronics.
- Flexibility Print Full Parts or Add Functionality to Existing Components.
- Full Solutions Equipment, Software, Services.



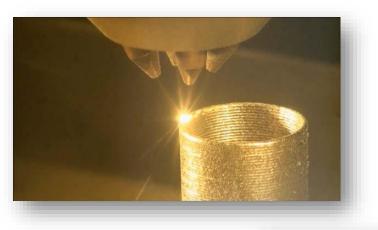
Privately Held - Profitable - Investment from GE & Autodesk



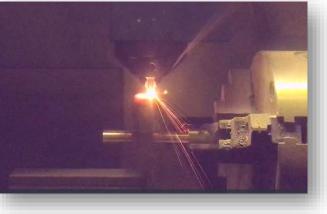
The LENS Process

- "LENS"- Laser Engineered Net Shaping, also known as directed energy deposition (DED) or laser metal deposition (LMD).
- LENS systems print via the DED process, where gas blown metal powder is delivered to a melt pool generated by a focused laser beam and fusion bonded to form fully dense 3 dimensional builds.

LENS Process

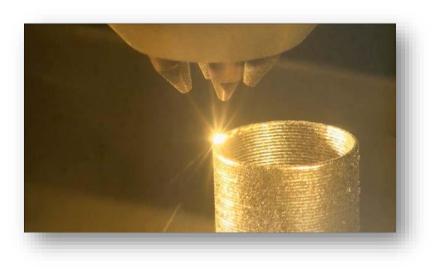


- Multi Nozzle Powder Delivery
- Metal Powder melted by Laser
- Layer by layer part repair

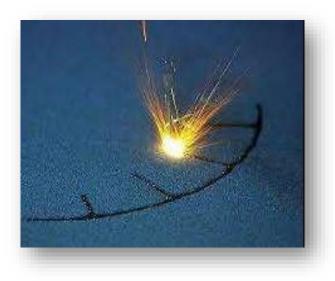


The LENS Process

- The LENS process was invented at Sandia National Labs back in the 1980's, and was commercialized by Optomec in the 1990's. Optomec has focused on the LENS process/LENS systems now for over 20 years.
- The LENS process is ideal for a number of applications:
 - Rapid Prototype
 - New builds
 - Repairs
 - Part modifications/add-ons
 - Rework
 - Remanufacturing
 - Coatings
 - Functional gradients



Metal AM Processes- DED and PBF

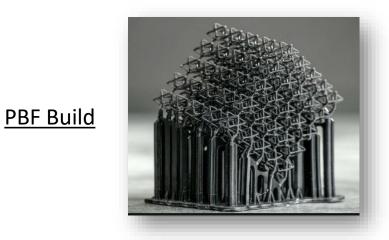

> There are two main metal AM processes for building parts additively from metal powder:

DED- Directed Energy Deposition "Powder Fed" Example- LENS (Laser Engineered Net Shaping)

PBF- Powder Bed Fusion "Powder Bed"

Example- SLM (Selective Laser Melting)

Metal AM Processes- DED and PBF


<u>DED</u>

- Powder and focused laser energy are delivered simultaneously. Part is built up in free space.
- The part is visible during build- any powder not fused falls away from part/build area.
- For building larger features/ less complex shapes (when compared to PBF builds).

DED Build

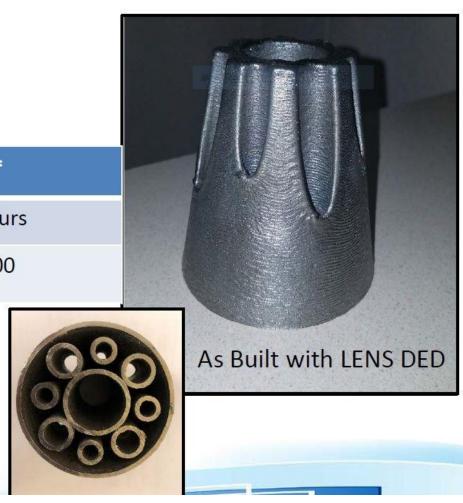
<u>PBF</u>

- Powder is laid out first, then selectively melted or sintered with a laser.
- Process is repeated layer by layer, and part is built up in a "powder cake"- the part is not visible during build.
- After processing, the excess powder is removed and the part revealed.
- For building smaller feature parts with more complex shapes/geometries.

8

DED and PBF Comparisons-

Feature	Directed Energy Deposition	Powder Bed Fusion	
Part Complexity/Resolution	Relatively simple geometry with less resolution (Ra 20-50 um)	Complex geometry with high resolution. (Ra 9/12um)	
Part Size	Unlimited	Limited	
Dimensional Tolerance	+/-1mm	+/- 0.2mm	
Ave. Layer Thickness	500um	30um	
Build Speed	0.5kg/hr. @ 2kW	0.06kg/hr. @ 400W	
Powder Cost	Ti-64 ~ \$160/kg IN 718 ~ \$80/kg Stainless Steel ~ \$30/kg	Ti-64 ~ \$600/kg; IN 718 ~ \$200/kg Stainless Steel ~ \$100/kg	
Repair/Coat & Add C Features	Capable - add material onto 3D surfaces	Limited - requires horizontal build plane	
Multi-material	Programmatically grade or blend	Limited	


DED and PBF- Sample Build Comparison

Comparison of Powder AM Methods

- Part dimensions:(Ø x H) 100 mm x 200 mm,
- Wall thickness 2.5mm
- Material: Inconel 716

Metric	LENS DED*	PBF*
Build Time	10 hours	240 hours
Cost	\$3,400	\$16,800

* time/cost estimates provided by LENS & PBF service bureaus. Does not include post processing.

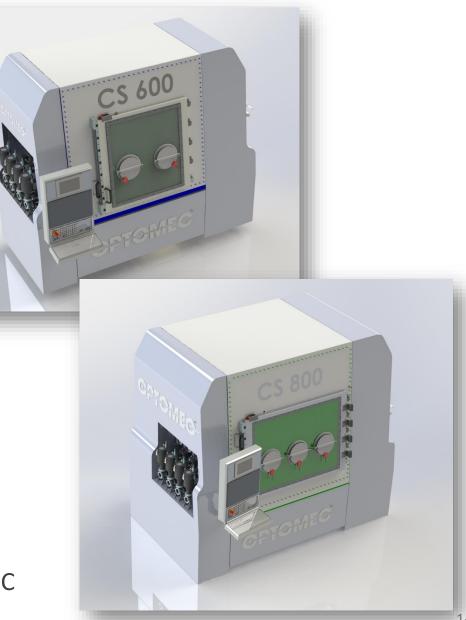
Distinct Advantages of the DED Process

- > Part size- larger build envelopes possible.
- > Build speed is *much* faster.
- > Cheaper material cost, less material waste.
- > Graded materials. New alloy development. Selective material properties in key build areas.
- Can start/stop process during building.
- > Able to repair parts. Can repair builds in-situ during building.
- Process can be performed in open or controlled atmosphere. Process head can be mounted to a robot/gantry system.
- Process lends itself well to building new parts, building on parts, remanufacturing of parts, repair, and coating applications.
- > Minimal effect on substrate microstructure.

New LENS Platform Line-Up The Classic Series

NOTE: ALL CS MODELS ARE ADDITIVE ONLY, CONTROLLED ATMOSPHERE SYSTEMS

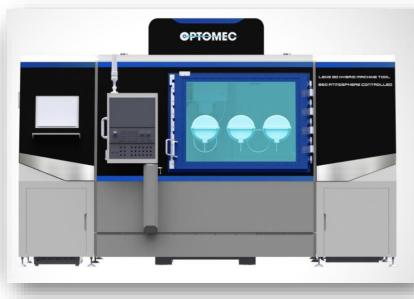
> LENS 150 AM CA SYSTEMS


- > Machine type: 3 axis additive controlled atmosphere.
- > XYZ Travel: 150x150x150mm.
- > Oxygen moisture Level <10ppm.
- > Proven LENS Print Engine Technology
 - > Proprietary Optomec powder feeders: up to 4 feeders.
 - > LENS deposition head 1.0: fiber laser 400W.
- > Optomec Software
 - > Easy to learn/use Windows HMI.
 - Supports standard CNC G&M codes.
 - > PartPrep for CAD to tool path generation.

LENS 600/800

- > LENS 600/800 AM CA SYSTEMS
 - > Machine type: 3 axis additive controlled atmosphere.
 - > LENS 600 XYZ Travel: 600x400x400mm.
 - > LENS 800 XYZ Travel: 800x600x600mm.
 - > Dri-train maintains O_2 /moisture Level <10ppm.
 - > Gas recirc system.
 - > Antechamber Ø: 375mm.
 - > Siemens 840D controller.
 - > Optional Interchangeable rotary axis and TR trunnion.
- > Proven LENS Print Engine Technology
 - > Up to 4 feeders.
 - LENS deposition head 3.X: up to 3 kW, configurable optics/nozzle.
 - Optional closed loop process controls/thermal imaging pyrometer.
 - Up to simultaneous 5 axis tool path generation software, CNC G&M codes.

> LENS 1500 AM CA SYSTEM


- > Machine type: 5 axis additive controlled atmosphere.
- > XYZ travel: 900x1500x900mm.
- > Tilt/rotate table:
 - \succ Rotary axis : continuous 360 $^{\circ}$
 - \succ Tilt axis: +90° to -90°
 - Maximum workpiece load: 1427 kg
- Modular part handling system.
- > Dri-train with 2 purification units maintain $O_2 < 10$ ppm.
- Siemens 840D controller.
- > Proven LENS Print Engine technology
 - > Up to 4 feeders.
 - > LDH 3.X: up to 3 kW, configurable optics/nozzle.
 - > Closed loop process controls/thermal imaging pyrometer.
 - > 5 Axis Tool Path Generation Software, CNC G&M codes.

The Machine Tool Series

LENS 500 HYBRID CA LENS 500 ADDITIVE CA LENS 500 HYBRID OA* LENS 500 ADDITIVE OA* LENS 860 HYBRID CA LENS 860 ADDITIVE CA* LENS 860 HYBRID OA* LENS 860 ADDITIVE OA*

LENS 1400 HYBRID OA*

* Longer lead times for these configurations.

> LENS 500 HY CA SYSTEM

- > Machine Type: 3 axis hybrid controlled atmosphere.
- > XYZ travel machining: 500x350x500mm.
- > XYZ travel additive: 350x300x500mm.
- > Tool changer: 8/10* tool carousel.
- > Table size/payload: 600x300 / 200 kg.
- > Gas purification/recirc system <40ppm.</p>
- > Siemens 828 controller.
- > Optional rotary axis or T/R trunnion.
- > Proven LENS Print Engine technology
 - > Up to 4 feeders.
 - > LDH 2.0: up to 2 kW, configurable optics/nozzles.
 - Closed loop process controls.
 - > 5 Axis tool path generation software, CNC G&M codes.

> LENS 860 HY CA SYSTEM

- > Machine Type: 3 axis hybrid controlled atmosphere.
- > XYZ travel machining: 860x600x610mm.
- > XYZ travel additive: 598x600x610mm.
- > Tool Changer: 16 tool carousel.
- > Table size/payload: 1000x600mm / 600 kg.
- > Gas purification/recirc system <40ppm.</p>
- Siemens 840D controller.
- > Optional rotary axis or T/R trunnion.
- > Proven LENS Print Engine technology
 - > Up to 4 feeders.
 - > LDH 3.X: up to 3 kW, configurable optics/nozzles.
 - Closed loop process controls.
 - > 5 axis tool path generation software, CNC G&M codes, option for simultaneous 5x.

> LENS 1400 HY OA SYSTEM

- > Machine type: 3 axis hybrid open atmosphere.
- > XYZ travel machining: 1400x700x600mm.
- > XYZ travel additive: TBD.
- > Tool changer: 24 tool arm type.
- > Table size/payload: 1450x600mm / 1400 kg.
- > Siemens 840D controller.
- > Optional rotary axis or T/R trunnion.
- > Proven LENS Print Engine technology
 - > Up to 4 feeders.
 - > LDH 3.X: up to 3 kW, configuratble optics/nozzles.
 - Closed loop process controls.
 - 5 axis tool path generation software, CNC G&M codes, option for simultaneous 5x.

LENS Print Engine (LPE)

> Open Architecture / Modular Solution Approach

- A la carte purchase of key components for integration of additive capabilities to existing CNC machines.
- Integrate powder feeder, laser, deposition head, and controls.
- > Enables A Wide Variety of Metalworking Applications
 - Repair, coatings, hybrid manufacturing, full part builds.
 - Process a full suite of open atmosphere metals.
- > Dramatically Lowers Barriers to Entry
 - Cost reduction, minimal training requirements, floor space, etc.
- Can Be Integrated Into An Installed Base of Millions of Machine Tools

LENS Applications

LENS Applications

The LENS process empowers users with a host of manufacturing capabilities: \triangleright

Applications- \succ

- Fast prototypes .
- New builds .
- Rework .
- Remanufacture .
- Repair •
- Part modifications/add-ons .
- Resurfacing .
- Coatings- corrosion/wear resistance •
- Material property enhancement .
- OD or ID cladding/coating .

Distinct to Optomec LENS Capabilities- \geq

- New designs through AM not possible previously •
- Near net shape builds •
- Range of laser powers/spot sizes •
- Material gradients •
- New alloy development •
- Open metal powder system •
- Process reactive materials (CA) •
- Build and machine in same system (HY) •
- Advanced simultaneous 5 axis motion
- Closed loop process monitoring •

Examples of LENS Fully Printed Samples

Nozzle Inconel 718 7 hours

Cooling Channels Stainless steel 4.5 hours

Venturi Stainless steel 5.5 hours

LENS Production Application- Hard Facing

- LDH mounted on gantry and used for hard facing/material property enhancement of injection mold tubing-
 - Tubes were cracking/failing after just a few cycles of use.
 - Company came to Optomec for solution in factory production line- to enhance material properties of "figure eight" tubing.
 - Simple tubes could be clad by other methods, but geometry of tubing required a 3D AM solution.
 - Tubes were clad with a proprietary hard facing powder that improved hardness and strength and eliminate cracking issues.

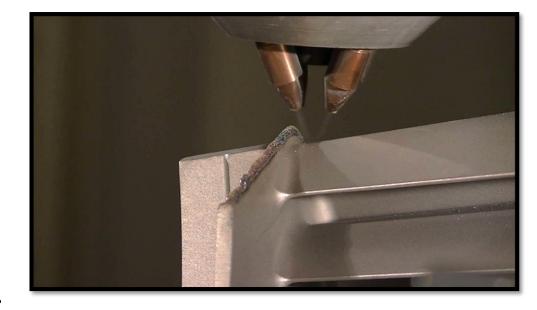
Proprietary Co / WC

LENS Production Application- Worn Impeller

- Customer need- worn pump impeller degrades performance. Long lead and costly replacement item.
- Value proposition- shorten lead time/improve delivery, reduce costs.
- LENS used to print stainless steel on to hard iron to improve material properties and overall performance.

Using LENS to restore worn areas

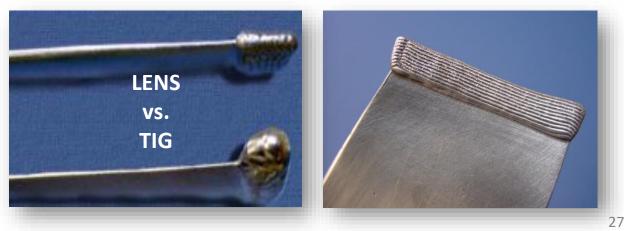
After machining


SS

25 Confidential & Proprietary

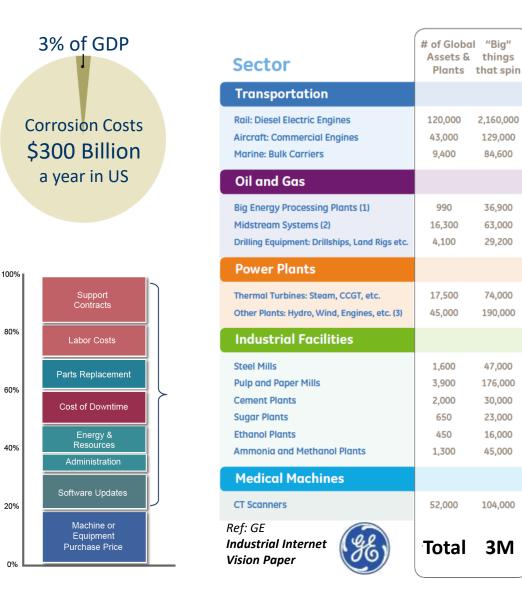
LENS Repair Overview

- LENS repair capabilities include:
 - Restoration of worn components.
 - Repair of damaged components and production defects.
 - Remanufacturing of spare parts.
 - Rework to new design iterations.
 - Functional grading/locally enhanced material properties-
 - corrosion or wear resistance, additional strength, etc.
- LENS can perform repairs on a wide variety of materials-
 - CMn steels- from basic (AS-30) to high strength steels (4140).
 - Stainless steels- 304L, 316, martensitics, PH stainless steels.
 - Nickel based alloys- Inconels, Monels.
 - Tool steels, Cobalt steels (Stellites).
 - Reactive metals- titanium, aluminum, magnesium.



LENS Repair: Benefits – Process Advantages

- Metallurgical bond vs. mechanical/adhesive
 - Much stronger bond.
- Small heat affected zone (HAZ); ie microns
 - Eliminates cracking and distortion.
 - Minimizes base metal dilution.
- Precision placement; near net shape deposition
 - Reduces finishing time and consumables.
- Rapid solidification
 - Fine grain size= superior properties.
 - Repair often has enhanced material properties.



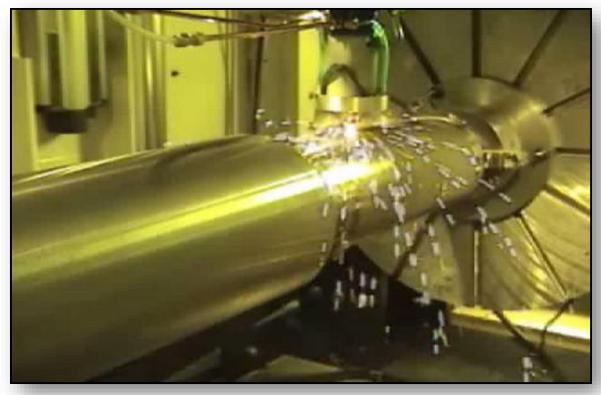
LENS Repair: The Need

- Corrosion or wear costs- \$300B/yr in US-
- GE's "3 Million Things that Spin"
 - Spinning leads to wear, which requires repair.
 - 200,000+ gas turbines; ie aircraft, power, etc.
 - Lifecycle costs run 5-15X initial purchase price.
- \$100B's/yr spent on spares and overhaul
 - Commercial aviation spends >\$100B per year.
 - US DOD spends >\$50B per year.
- More cost effective to restore vs. replace
 - DED repairs can be more wear resistant than original part.
- Significant ROI for LENS/DED repair solutions

LENS Repair Examples- Recent Military Benefits/Cost Savings

Example: US Army repair of components from Honeywell AGT 1500 gas turbine engine

Material	Inconel 713	Inconel 713	Inconel 713	321 Stainless
New Cost	\$ 8297	\$ 5485	\$ 6032	\$ 910
Repair Cost	< \$2,000	< \$2,000	< 2,250	< \$300
Savings/Part	> 75%	> 60%	> 60%	> 60%


29

SS

LENS Repair of Rotating Parts – Shafts

- Shafts rotated in 4th axis.
- LENS chosen for minimal distortion vs. traditional welding.
- No shaft warpage- successful restoration of worn surface.

Bulk Deposition

After Printing; Before Finishing

After Grinding and Polishing

Confidential & Proprietary

30

Confidential & Proprietary

31

LENS Repair of Rotating Parts – Gears

- Line down due to broken teeth on a gear at a local NM food processing plant.
- Fully repaired and back in operation in <12 hours vs. 12-week lead time for new gear.

Broken Gear Teeth

Machined to Spec

CMn

Inco 718

LENS Repair of Rotating Parts – Seals

- Second stage rotor disc seal repair for AGT 1500 M1 A1 Abrams Tank engine.
- Process: Machine back worn seal, LENS deposit Inco718, heat treat, machine finish.

Surface preparation (machining)

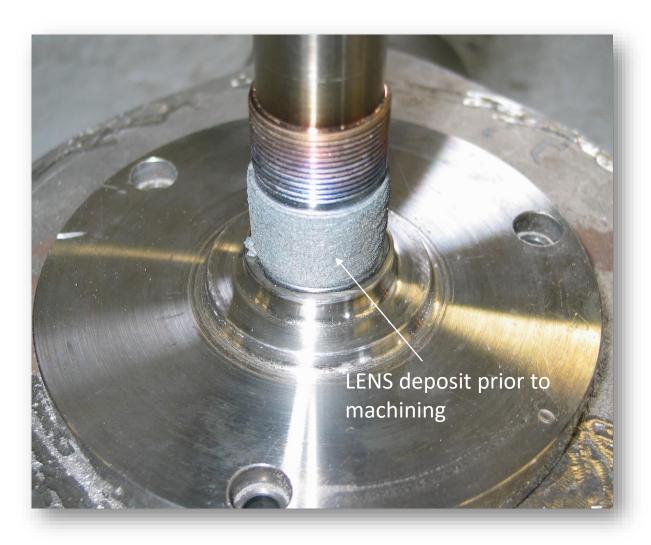
After LENS printed repair

Machined to spec

Ti-6-4

LENS Repair of Rotating Parts – ID Seals

- Material: Ti-6-4
- Engine: T55 Chinook Helicopter lacksquare
- LENS Advantage:
 - Quality •
 - Access to recessed features
- Two repairs qualified by U.S. Army
- Saving >\$10K vs. part replacement



LENS Repair of Bearing Surface- Material Property Enhancement

- LENS used to resurface a worn bearing surface.
- 4340 high carbon steel resurfaced with 410 stainless steel.
- 410 stainless steel used to build up worn surface and to provide better corrosion and wear resistance over original material.
- Quick turnaround repair of part to place back into service with minimum down time.

Ti-6-4

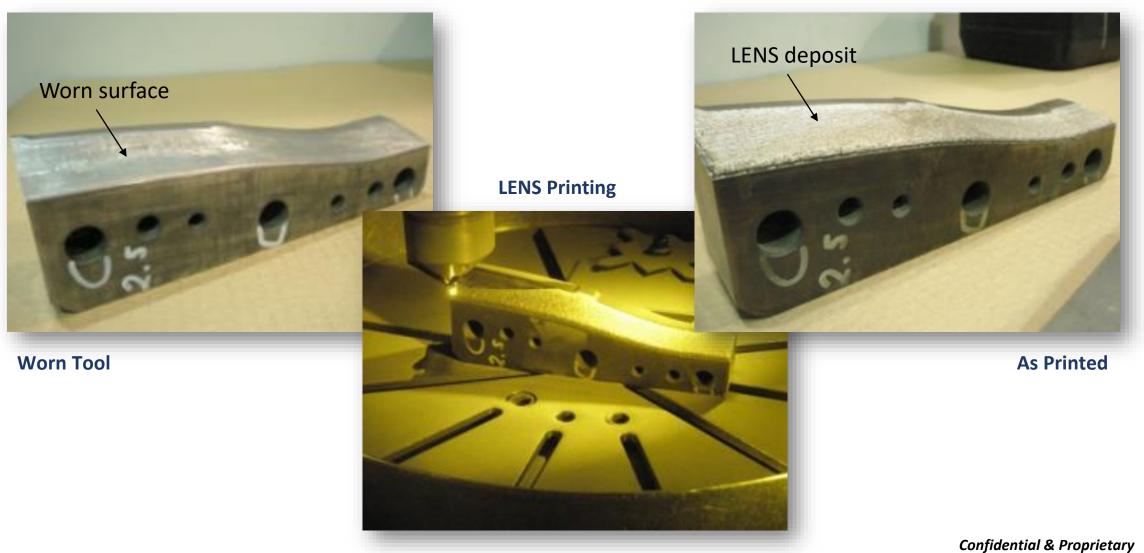
LENS Repair of Seals – Ball Valve

- Scratch on Titanium ball valve causes leak; gas tungsten arc welding unsuccessful due to distortion from heat input.
- LENS conformal printing on surface successful, 15 minute repair. Cost/time greatly reduced vs. part replacement.

1" long scratch

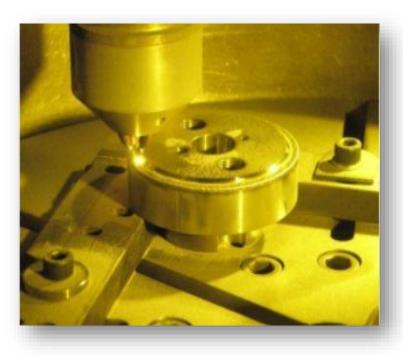
After printing; before finishing

machined & polished



Confidential & Proprietary

LENS Repair of Tooling – Deep Draw Tools



Co / WC

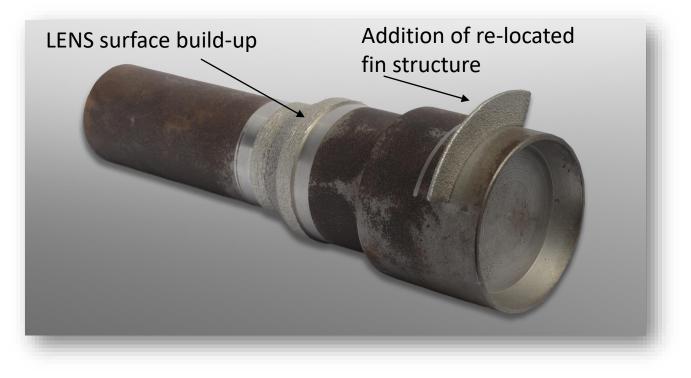
LENS Repair of Tooling – Deep Draw Tool Cobalt/Carbides

- Substrate materials: nodular cast iron and various tool steels.
- LENS deposition of various hard facing steels (Co and WC alloys) and final machining.

Printed repair process

After printing; before finishing

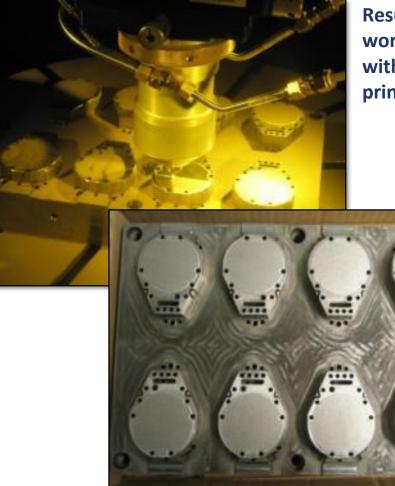
Machined to spec



LENS Repair of Tooling – Core Pin

Repair/Rework

- Build up of worn shaft surface.
- Re-design- the fin structure location was moved.
- Cost savings/lead time reduction vs. new part.


H 13 Tool Steel

LENS Repair of Tooling – Injection Mold Resurfacing

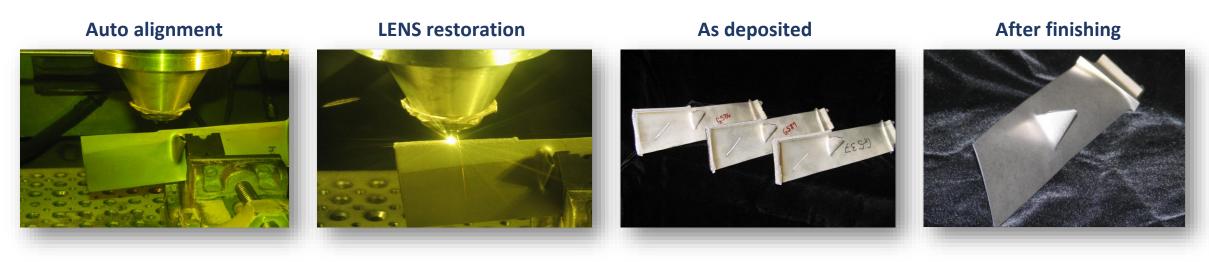
Mold prior to repair shows pitting on surface

Resurfacing worn areas with LENS printing

LENS Injection Mold Wear Coating- Deep Repair Head

- Barrels used to eject hot resin in injection molding.
- High wear surface, especially with glass-filled resins.
- LENS printing of a carbide wear resistant material on ID surface.
- LENS proprietary "Deep Repair Head" used.

40



Titanium

LENS Repair of Gas Turbines – Blade Tips, Edges, and FOD

- Turbine blades wear over time and suffer damage from 'foreign objects damage' ("FOD").
- New blades can be very expensive, and very long lead times for older units.
- LENS can be used to cost-effectively restore/resurface blades at a fraction of the cost.


Example: Using LENS to repair tips, leading edges, and scratches on Ti blades

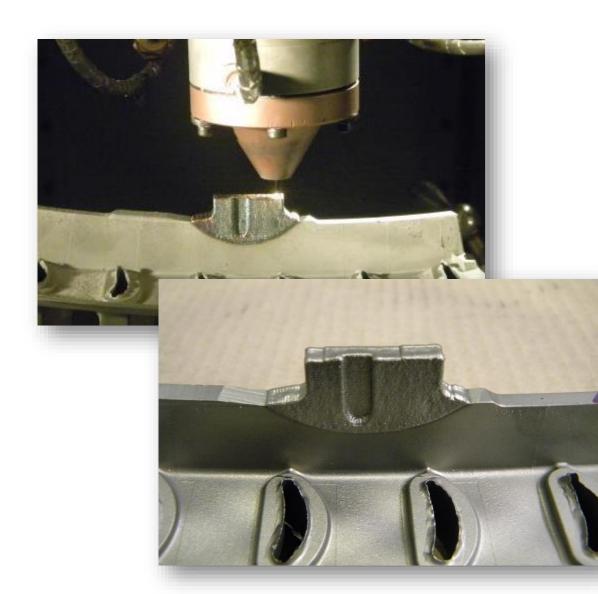
LENS Repair of Gas Turbine Blisks- Material Enhancement

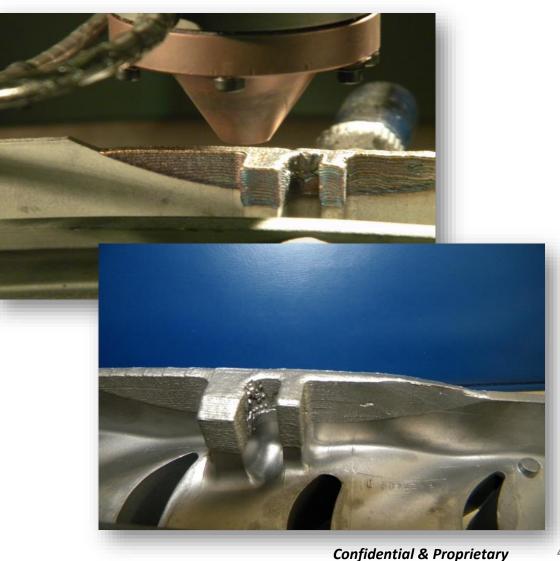
Example: Repair of leading edges for T-700 blisk (passes spin test requirements)

After printing; before finishing

- Base material: AM355 Steel
- Repair material: Stellite 21 (cobalt based, wear resistant)
- ✓ 60,000 rpm Spin Test

✓ 50,000 Cycle LCF Spin Test


After finishing and successful spin tests



LENS Repair of Gas Turbines – Stator Guide Walls

45

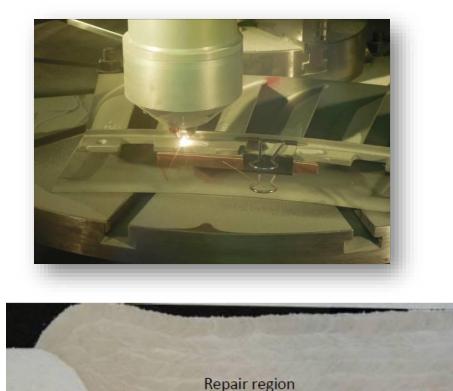


LENS Repair: Powder Bed Fusion Parts

- Powder bed fusion parts are very expensive to fabricate, but must be scrapped if underbuilt, if defects are found, or if the process is interrupted prior to completion.
- The LENS process can effectively repair/add metal to powder bed parts to repair/complete the build.

LENS repair of an Inconel PBF part

LENS used to extend shaft length on PBF fabricated fork joint

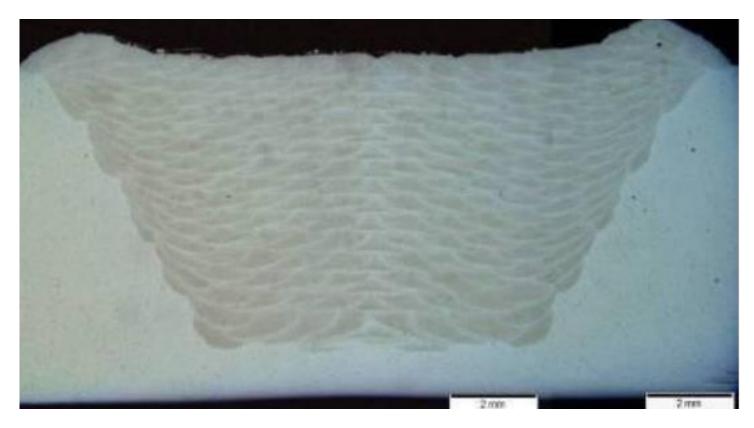


LENS Repair of Defects – Machining Error

- Tier 1 aircraft engine manufacturer.
- Machining error on high cost part.
- Developed rework procedures for IN718, Waspaloy, Rene 77 and Mar-M-247 parts.
- Machine and qualified processes delivered to Field Repair Center in Taiwan

Location of original machining defect

LENS Repair of Defects – Filling Blind Holes


Machined sample

Surface remelt

After LENS deposition

Cross-Section

Thank You.
