# DESKTOP ANISOPRINTING TURNKEY CONTINUOUS FIBER 3D PRINTING SOLUTION

HARDWARE | MATERIALS | SOFTWARE | TRAININGS

#### **HARDWARE: COMPOSER**

# CONTINUOUS FIBER REINFORCED COMPOSITES

30 stronger than pure plastic2 stronger & lighter than aluminum

#### **AVAILABLE FORMATS**

A4 297x210x140mm A3 460x297x210mm build volume

#### **OPEN SYSTEM**

flexible materials choice, fiber volume ratio, parts complexity and fiber laying trajectories;

# OPTIMAL COMPOSITE STRUCTURES

Lattice reinforcement — minimum weight, price and production time for the required strength







#### **MATERIALS: COMPOSITE CARBON FIBER**

EFFECTIVE DIAMETER 0.35 MM
FIBER VOLUME 60%
ELASTIC MODULUS 150 GPA
TENSILE STRENGTH 2200 MPA

|                                                     | PETG + CCF |
|-----------------------------------------------------|------------|
| Density, g/cm3                                      | 1.4        |
| Tensile modulus in fiber direction, GPa             | 64         |
| Poisson ratio 21                                    | 0.36       |
| Tensile ultimate stress in fiber direction, MPa     | 860        |
| Tensile elongation in fiber direction, %            | 1.3        |
| Compressive ultimate stress in fiber direction, MPa | 290        |
| Flexural strength, MPa                              | 520        |



#### MATERIALS: COMPOSITE BASALT FIBER

EFFECTIVE DIAMETER 0.28 MM
FIBER VOLUME 60%
ELASTIC MODULUS 54 GPA
TENSILE STRENGTH 1557 MPA

|                                                     | PETG + CBF |
|-----------------------------------------------------|------------|
| Density, g/cm3                                      | 1.7        |
| Tensile modulus in fiber direction, GPa             | 22         |
| Poisson ratio 21                                    | 0.34       |
| Tensile ultimate stress in fiber direction, MPa     | 600        |
| Tensile elongation in fiber direction, %            | 2.8        |
| Compressive modulus in fiber direction, GPa         | 20         |
| Compressive ultimate stress in fiber direction, MPa | 195        |
| Compressive elongation in fiber direction, %        | 1.2        |



#### **MATERIALS: PLASTICS**





#### SPECIALLY FORMULATED FOR THE TECHNOLOGY







#### **MATERIALS: PLASTICS**



For better composite mechanics and perfect adhesion to reinforcing fiber



Carbon fiber filled polyamide. For perfect surface quality and ease of use. Can be printed without a dryer.







**SOFTWARE: AURA** 

→ for FFF and CFC printers;

→ support for STL and CAD formats: .stp, .3ds, .obj;

→ model saved on a local PC;

→ G-code generalization, geometry-view;

→ separate setting and combining of printers, plastics and profiles;

→ layer masks.



#### **SOFTWARE: PRINTING PROFILES**

Verified printing settings for certain plastic filaments: just pick from database and print



## Add new profile Carbon-P [MCPP] (0.4) AP Carbon-P [MCPP] (0.6) AP Carbon-P [MCPP] + CCF 1.5k AP PETG [ESUN] AP PETG [ESUN] + CBF AP PETG [ESUN] + CCF 1.5k AP PETG [Generic] AP PETG [Generic] + CCF 1.5k AP SLICING PET-G [MCPP] AP PET-G [MCPP] + CBF AP PET-G [MCPP] + CCF 1.5k AP

( a

#### TRAINING COURSES FROM THE TECHNOLOGY DEVELOPERS

- → Introduction to anisoprinting
- → Composite basics and design
- → Slicing software
- → Plastics
- → Hardware operation



#### BASED ON COMPOSITE FIBER CO-EXTRUSION TECHNOLOGY



# SCOTT GAMBLER DOWNHILL BIKE ROCKER

40% manufacturing costs decrease, 35% weight decrease, smart load-oriented reinforcement

|        | CNC metal | Anisoprinting (CCF + Smooth) |
|--------|-----------|------------------------------|
| Weight | 500 g     | 325 g                        |
| Prince | €380      | €250                         |





### **SOFT JAWS**

60% weight decrease in comparison to metal

|        | Metal | Anisoprinting<br>(Smooth PA + CBF) | Savings |
|--------|-------|------------------------------------|---------|
| Weight | 600 g | 250 g                              | 60%     |







# TOOL FOR TURBINE BLADE PRODUCTION

8 times weight reduction, 40% cost savings in comparison to metal tool, precise production timing

| 400 bar<br>pressure | Metal | Anisoprinting<br>(Smooth PA + CBF) | Savings |
|---------------------|-------|------------------------------------|---------|
| Weight              | 31 kg | 4 kg                               | 87%     |
| Price               | €1200 | €700                               | 40%     |



## LEGS OF MOBILE ROBOT FOR SENSING, INSPECTION, AND REMOTE OPERATION

Robotic legs: flexible prototyping, 70% weight reduction, 40% lower manufacturing costs

|        | Aluminum | Anisoprinting<br>(Smooth PA + CCF) | Savings |
|--------|----------|------------------------------------|---------|
| Weight | 1225 g   | <b>350</b> g                       | 70%     |
| Price  | €460     | €260                               | 40%     |

